Course Library View the full range of courses
Accounting (92 courses)
Language (58 courses)
Teaching & Education (37 courses)
Health and Social Care (136 courses)
Management (346 courses)
IT & Software (117 courses)
Employability (863 courses)
Personal Development (1332 courses)
Python Quick Refresher (Optional) | |||
Welcome to the course! | 00:01:00 | ||
Introduction to Python | 00:01:00 | ||
Course Materials | 00:00:00 | ||
Setting up Python | 00:02:00 | ||
What is Jupyter? | 00:01:00 | ||
Anaconda Installation: Windows, Mac & Ubuntu | 00:04:00 | ||
How to implement Python in Jupyter? | 00:01:00 | ||
Managing Directories in Jupyter Notebook | 00:03:00 | ||
Input/Output | 00:02:00 | ||
Working with different datatypes | 00:01:00 | ||
Variables | 00:02:00 | ||
Arithmetic Operators | 00:02:00 | ||
Comparison Operators | 00:01:00 | ||
Logical Operators | 00:03:00 | ||
Conditional statements | 00:02:00 | ||
Loops | 00:04:00 | ||
Sequences: Lists | 00:03:00 | ||
Sequences: Dictionaries | 00:03:00 | ||
Sequences: Tuples | 00:01:00 | ||
Functions: Built-in Functions | 00:01:00 | ||
Functions: User-defined Functions | 00:03:00 | ||
Essential Python Libraries for Data Science | |||
Installing Libraries | 00:01:00 | ||
Importing Libraries | 00:02:00 | ||
Pandas Library for Data Science | 00:01:00 | ||
NumPy Library for Data Science | 00:01:00 | ||
Pandas vs NumPy | 00:01:00 | ||
Matplotlib Library for Data Science | 00:01:00 | ||
Seaborn Library for Data Science | 00:01:00 | ||
Fundamental NumPy Properties | |||
Introduction to NumPy arrays | 00:01:00 | ||
Creating NumPy arrays | 00:06:00 | ||
Indexing NumPy arrays | 00:06:00 | ||
Array shape | 00:01:00 | ||
Iterating Over NumPy Arrays | 00:05:00 | ||
Mathematics for Data Science | |||
Basic NumPy arrays: zeros() | 00:02:00 | ||
Basic NumPy arrays: ones() | 00:01:00 | ||
Basic NumPy arrays: full() | 00:01:00 | ||
Adding a scalar | 00:02:00 | ||
Subtracting a scalar | 00:01:00 | ||
Multiplying by a scalar | 00:01:00 | ||
Dividing by a scalar | 00:01:00 | ||
Raise to a power | 00:01:00 | ||
Transpose | 00:01:00 | ||
Element wise addition | 00:02:00 | ||
Element wise subtraction | 00:01:00 | ||
Element wise multiplication | 00:01:00 | ||
Element wise division | 00:01:00 | ||
Matrix multiplication | 00:02:00 | ||
Statistics | 00:03:00 | ||
Python Pandas DataFrames & Series | |||
What is a Python Pandas DataFrame? | 00:01:00 | ||
What is a Python Pandas Series? | 00:01:00 | ||
DataFrame vs Series | 00:01:00 | ||
Creating a DataFrame using lists | 00:03:00 | ||
Creating a DataFrame using a dictionary | 00:01:00 | ||
Loading CSV data into python | 00:02:00 | ||
Changing the Index Column | 00:01:00 | ||
Inplace | 00:01:00 | ||
Examining the DataFrame: Head & Tail | 00:01:00 | ||
Statistical summary of the DataFrame | 00:01:00 | ||
Slicing rows using bracket operators | 00:01:00 | ||
Indexing columns using bracket operators | 00:01:00 | ||
Boolean list | 00:01:00 | ||
Filtering Rows | 00:01:00 | ||
Filtering rows using & and | operators | 00:02:00 | ||
Filtering data using loc() | 00:04:00 | ||
Filtering data using iloc() | 00:02:00 | ||
Adding and deleting rows and columns | 00:03:00 | ||
Sorting Values | 00:02:00 | ||
Exporting and saving pandas DataFrames | 00:02:00 | ||
Concatenating DataFrames | 00:01:00 | ||
groupby() | 00:03:00 | ||
Data Cleaning | |||
Introduction to Data Cleaning | 00:01:00 | ||
Quality of Data | 00:01:00 | ||
Examples of Anomalies | 00:01:00 | ||
Median-based Anomaly Detection | 00:03:00 | ||
Mean-based anomaly detection | 00:03:00 | ||
Z-score-based Anomaly Detection | 00:03:00 | ||
Interquartile Range for Anomaly Detection | 00:05:00 | ||
Dealing with missing values | 00:06:00 | ||
Regular Expressions | 00:07:00 | ||
Feature Scaling | 00:03:00 | ||
Data Visualization using Python | |||
Introduction | 00:01:00 | ||
Setting Up Matplotlib | 00:01:00 | ||
Plotting Line Plots using Matplotlib | 00:02:00 | ||
Title, Labels & Legend | 00:07:00 | ||
Plotting Histograms | 00:01:00 | ||
Plotting Bar Charts | 00:02:00 | ||
Plotting Pie Charts | 00:03:00 | ||
Plotting Scatter Plots | 00:06:00 | ||
Plotting Log Plots | 00:01:00 | ||
Plotting Polar Plots | 00:02:00 | ||
Handling Dates | 00:01:00 | ||
Creating multiple subplots in one figure | 00:04:00 | ||
Exploratory Data Analysis | |||
Introduction | 00:01:00 | ||
What is Exploratory Data Analysis? | 00:01:00 | ||
Univariate Analysis | 00:02:00 | ||
Univariate Analysis: Continuous Data | 00:06:00 | ||
Univariate Analysis: Categorical Data | 00:02:00 | ||
Bivariate analysis: Continuous & Categorical | 00:02:00 | ||
Bivariate analysis: Categorical & Categorical | 00:03:00 | ||
Bivariate analysis: Continuous & Categorical | 00:02:00 | ||
Detecting Outliers | 00:06:00 | ||
Categorical Variable Transformation | 00:04:00 | ||
Time Series in Python | |||
Introduction to Time Series | 00:02:00 | ||
Getting Stock Data using Yfinance | 00:03:00 | ||
Converting a Dataset into Time Series | 00:04:00 | ||
Working with Time Series | 00:04:00 | ||
Time Series Data Visualization with Python | 00:03:00 | ||
Order your Certificates & Transcripts | |||
Order your Certificates & Transcripts | 00:00:00 |
Can’t find the anwser you’re looking for ? Reach out to customer support team.
There are no specific prerequisites for this course, nor are there any formal entry requirements. All you need is an internet connection, a good understanding of English and a passion for learning for this course.
You have the flexibility to access the course at any time that suits your schedule. Our courses are self-paced, allowing you to study at your own pace and convenience.
For this course, you will have access to the course materials for 1 year only. This means you can review the content as often as you like within the year, even after you've completed the course. However, if you buy Lifetime Access for the course, you will be able to access the course for a lifetime.
Yes, upon successfully completing the course, you will receive a certificate of completion. This certificate can be a valuable addition to your professional portfolio and can be shared on your various social networks.
We want you to have a positive learning experience. If you're not satisfied with the course, you can request a course transfer or refund within 14 days of the initial purchase.
Our platform provides tracking tools and progress indicators for each course. You can monitor your progress, completed lessons, and assessments through your learner dashboard for the course.
If you encounter technical issues or content-related difficulties with the course, our support team is available to assist you. You can reach out to them for prompt resolution.